
Automation Tools
for Better Code

We are an innovative company in the field of software development for
embedded systems from Karlsruhe, Germany, founded in 2016.

As experts in compiler technology and static source code analysis, we help
our customers analyze and optimize their code by offering software-tools
and services.

Our aim is to provide comprehensive insight into the runtime performance
of an application (emmtrix Performance Estimator) as well as the complexity/
interdependency of the code (emmtrix Dependency Analyzer) early on in the
development process. Armed with this information, engineers can make in-
formed decisions right from the start of the project. Our analysis solutions
can be integrated into existing workflows and run in continuous integration
set-ups on a defined schedule complete with versioning and changelogs.

Going beyond analysis we also help with automated software parallelization
(emmtrix Parallel Studio and emmtrix Code Vectorizer) to optimize perfor-
mance on multicore and manycore processors, as well as accelerators such
as vector processors, but also GPUs and DSPs. This parallelization can be
qualified according to ISO 26262 / DO-178C upon request.

Your emmtrix team

Welcome to emmtrix Technologies

Content

TargetLink Support Page 7
Use Case ePE Page 8

AUTOSAR Support Page 11
CI/CD Workflow Support Page 12

Performance Page 6
Estimator
• Early in workflow
• Master your timing budgets
• Continuous integration support
• Function developer sees impact of
 implementation
• Intuitive visualization

Parallel Studio Page 13
• Parallel C code for Multi-/Manycore CPUs
• Optimize runtimes
• Interactive workflow
• Functional safety according to standards

like ISO 26262, DO-178C and others

Code Vectorizer Page 14
• Easy exploitation of parallel
 vector hardware
• Correct-by-construction code
 generation
• Speedup > 10x

C++ to C Compiler Page 15
• Conversions:
 - Simulink to MATLAB®
 - MATLAB® / Octave / Scilab to C
 - C++ to C
• User-controlled optimizations
• Aimed at embedded systems and

automatic analysis

Our Services Page 15
• Technical Consulting
• Integration & Tool Customization
• Trainings & Support

Use Case eDA Page 10

Dependency Page 9
Analyzer
• Identify data dependencies
• Verify your specification
• Document for (re-)certification
• Analyze event chains
• Data flow analysis

Performance Estimator
Dependency Analyzer

https://www.emmtrix.com/tools/emmtrix-performance-estimator
https://www.emmtrix.com/tools/emmtrix-dependency-analyzer
https://www.emmtrix.com/tools/emmtrix-parallel-studio
https://www.emmtrix.com/tools/emmtrix-code-vectorizer

We have been working with emmtrix for
a couple of years now and we find their
technology of great interest. Their expertise
in the field of source-to-source compiler
technology and their tool suite emmtrix
Parallel Studio help us in developing and
improving our high-performance hardware
solution. Sadahiro Kimura, Manager of Advanced Technology, NSITEXE

ePS shows where and how
performance can be increased.
As a „side-effect“ of using ePS
the developer quickly learns
to design his application to be
suitable for multicore HW.
Arndt-Michael Meyer,
Solution & Partner Manager, ETAS GmbH

What Our Clients Say

5 emmtrix Technologies > Performance Estimation

emmtrix Tool Overview

Some Supported Platforms

4 emmtrix Technologies > What Our Clients Say 5emmtrix Technologies > emmtrix Tool Overview

Code

XML files and
compatible

C code

TargetLink
C Code

Code Conversion Analysis Optimization

Results and Reports

Code

optimized Results and Reports

Performance Estimator
The Tool to GET the Performance of Your Applications

emmtrix Performance Estimator (ePE) supports different ways to acquire the duration of the tasks of an application. These
vary in accuracy and additional software or hardware requirements. Static code analysis provides basic information without
the need for hardware or special software. More accurate numbers can be collected with interfaces to simulators or the
hardware. Depending on the requirements, the methods can be combined as desired.
The result of the performance estimation can be visualized using our interactive and zoomable hierarchical program view
(view graph below). The X-axis represents the time, therefore the width of each block depends on the actual duration. On
the Y-axis, the control structure of the program can be seen. Additional levels are added for structures like function calls,
loops or conditions.

Features

• Automatic generation of reports and visualization
for more detailed information

• Confidence levels for classification of results
• Easy to integrate into the development workflow
• Fast evaluation for different target platforms
• Static performance estimation based on C

or assembly code
• Integration of simulators or hardware profiling

into your workflow

Benefits

• Performance estimation early in the development
process

• Continuous monitoring of performance changes
during the development

• Comparison of performance for different or
heterogeneous target platforms

• Detect high-runners or critical parts of your
software application

Visualization of the Performance Estimation HTML Report of Results

Get to Know the Performance of Your Simulink Models

ePE analyzes TargetLink generated C code and maps the performance values to the original Simulink blocks. This enables
function developers who work with Simulink models to get a better understanding of the performance impact of design
decisions on the embedded device (for more details see next page). Results can be accessed directly from generated
HTML reports or viewed in the ePE GUI, helping to faster identify the bottlenecks / hotspots of the application.

Features

• Analysis of TargetLink generated C code
• Min and max execution time
• Number of time blocks of subsystems are called
• Interactive HTML report for results
 - Filtering
 - Searching
 - Sorting

Benefits

• Continuous monitoring of runtime with CI flow
integration

• Runtimes for subsystems and modules without
instrumentation of source code

• Exploration of different architectures without the
need for hardware

6 emmtrix Technologies > Performance Estimator 7emmtrix Technologies > Performance Estimator > TargetLink Support

TargetLink Support

https://www.emmtrix.com/tools/emmtrix-performance-estimator

Dependency Analyzer
Identify the Event Chains of Your Applications

emmtrix Dependency Analyzer (eDA) assists you with the
safety analysis of your applications: Results from a data
dependency analysis of the source code can be used to:
• Verify freedom from interference
• Propagate different safety levels of variables
• Detect mixed-criticality dependencies

(variables with different safety levels)
• Verify event chains between input and output

signals of the system

A further use case is the optimization of your testing
strategies by identifying which subsystems are affected
by a change in the source code and, more importantly,
which subsystems are not and therefore do not have to
be tested again.

The tool can easily be integrated into CI flows offering
automation, versioning and logging.

Features

• Analysis takes all possible paths of the control flow
graph into consideration to ignore dependencies that
can never occur

• Data and control dependencies between variables
are calculated

• All calls to sub-functions are taken into account
• Supports analysis of programs consisting of multiple

compilation units (source files)
• Supports analysis of delayed dependencies where

values are stored in a variable and only fed to the
output when the function is called again

Benefits

• Verify your expected dependencies
• Ensure that there are no unwanted connections

between input and output signals
• Track down and document all modules affected

by an input signal
• Identify which code will be affected by code changes

to minimize re-testing effort
• Document all dependencies for any required

certification process

8 9emmtrix Technologies > Dependency Analyzeremmtrix Technologies > Performance Estimator > Use Case ePE

Subsystem 1 Subsystem 3

Subsystem 2

Use Case ePE

ePE calculates the runtime of Simulink blocks on a specified hardware platform based on static analysis of the source code
generated from these blocks.

Here is a typical workflow in automotive:
• Functions are developed in Simulink
• TargetLink is used to generate C code for the target platform
• Timing is measured after integration of all functions on the hardware or a simulator
• In case of timing issues, the models have to be adapted and the steps are repeated

Addressing timing issues in this way is expensive and time-consuming, as the issues are detected only after integration
and measurements. Manually mapping these results back to Simulink is complicated as the granularity of the information
is on the level of runnables or software components as specified in AUTOSAR and not on the actual model.

ePE can be integrated after code generation from the model. The user immediately receives feedback on the performance
impact of implementation decisions without the need for integration or execution on hardware. Results of the automated
analysis are presented in a hierarchical HTML report using the block names from the model. For all blocks, runtimes are
provided for average, minimum, and maximum execution frequencies. This gives the function developer a much better idea
of which parts of the application are taking the most time on the hardware. Optimizations are much easier and cheaper to
implement at this stage than after integration on the hardware.

Today's Typical Model-Based Workflow in Automotive

Signal-Tracing across Subsystems

ePE for Automotive Function Developers Using
Simulink and TargetLink

Timing issues detected:
start again

• Function development • Generate code for the
hardware

• Integration
• Tracing or measurement

Hardware

TargetLink

Simulink

https://www.emmtrix.com/tools/emmtrix-dependency-analyzer

10 11emmtrix Technologies > Performance Estimator/Dependency Analyzer > AUTOSAR Supportemmtrix Technologies > Dependency Analyzer > Use Case eDA

Use Case eDA

eDA extracts and visualizes the internal data dependencies between R-Ports and P-Ports (for more details see next
page) of software components (SWCs) by analyzing their internal behavior. A typical development flow in the automo-
tive domain includes the use of AUTOSAR to specify different software components and runnable entities to realize the
desired functionality. Simulink and Stateflow are often used to implement the actual functionality. TargetLink is then
used to generate the C code for the target platform. All data exchange in the application is typically modeled using
AUTOSAR Runnables while the source code of the runtime environment is generated at the end when all components
are integrated. eDA automatically analyzes the generated C code regarding its data dependencies. The AUTOSAR mo-
del is used as the basis to generate analyzable code and the results of the source code analysis are mapped back to
the data prototypes, variables and SWC ports as defined in the AUTOSAR model. This approach allows to verify that, in
the generated C code, all data dependencies are detected in line with the model and no undesired connections exist
between input and output ports of the model.

Results can be exported in exchange formats like XML or JSON or visualized like in the image/interactive graphical
representation below.

Integration with existing CI flows enables automatic monitoring of dependencies throughout the project lifecycle, so
that changes are detected whenever the models or source code are modified.

quantify_sensor
program_alarm

synthesize_protocol
parse_pixel

copy_application
reboot_circuit

connect_bandwidth
transmit_hard drive

program_pixel
override_program

connect_bus
program_driver

quantify_sensor
program_alarm
synthesize_protocol

Runnable_10ms

Internal Data Dependencies of a Runnable

Structure of a Software ComponentThe emmtrix analysis tools ePE and eDA are designed to
analyze C code on the Application Layer in the form of run-
nables that are part of Application Software Components
(SWCs) and make up the functional part of applications.
They can be considered as running isolated from the rest
of the system as all interaction with other runnables is
handled through function calls to the RTE.

The entry point for analysis or optimization is typically a
runnable, specifically the C function that implements the
runnable’s functionality. As the RTE can come from diffe-
rent vendors and not all developers in the supply chain
have access to it, we generate our own custom RTE from
the AUTOSAR specification to facilitate the analysis of the
runnables. This covers all relevant topics such as data
types, required functions and macro definitions to ensure
correct analyzability of the source code.

eDA for Dependency Verification of AUTOSAR
Specifications

Using AUTOSAR with emmtrix Tools

Application SWC

Runnable

Runnable

Enhanced Support for Automotive

The AUTOSAR classic platform is a standard specification that defines several abstraction layers from the microcontroller
to the applications. The Basic Software (BSW) Layer consists of services such as operating system, communication,
diagnostic, and hardware abstraction layers that provide standardized interfaces to the application layer. The Runtime
Environment (RTE) acts as the middleware that enables communication between the application software and the basic
software layer, abstracting the complexity of the hardware and the BSW modules. Finally, the Application Layer contains
functional software components developed by OEMs or suppliers, which can be easily ported across different hardware
platforms due to the abstraction provided by the RTE.

Features in an AUTOSAR Environment

• Automatic extraction of relevant runnables based on
trigger events

• Performance estimation of individual runnables on
different embedded architectures using, for example,
Infineon AURIX, ARM Cortex or RISC-V processors

• Extraction of data dependencies with individual runna-
bles to verify and obtain more detailed information on
dependencies as specified in AUTOSAR

• Interactive dependency visualization per runnable
• Enables event chain analysis across multiple SWCs
• Tracking of signals and their safety levels throughout

the system, e.g. to detect OBD-relevant parts

AUTOSAR Software Stack

Runtime Environment

Application Layer

Microcontroller

Basic Software
ECU Abstraction

Layer Services Layer

Microcontroller Abstraction Layer

Complex Drivers

Typical AUTOSAR Workflow with Integrated eDA

Autosar TargetLink

Verification of dependencies

C Code

Specification of
system

Generation of
C code

Source code for
hardware

Simulink/Stateflow

Implementation

12 emmtrix Technologies >Performance Estimator/Dependency Analyzer > CI/CD Workflow Support

Enhanced Support for Automotive

Many modern software development methodologies rely on the use of CI/CD workflows (Continuous Integration/Con-
tinuous Delivery). The aim of such a workflow is to automate the process of building, testing and deploying software,
so that changes to the source code in the version control system either fail quickly or are quickly pushed to test and
staging environments for thorough testing.

The emmtrix tools ePE and eDA are designed to integrate directly into such flows to provide developers with additi-
onal information throughout the development process. A setup in a CI/CD pipeline based on tools like Jenkins might
look like this:

Parallel Studio
The Tool for Parallel Programming

emmtrix Parallel Studio (ePS) helps you to optimize the performance of your embedded applications on multicore, ma-
nycore and DSP architectures as well as any combination of these processing units. Our tool automates and radically
simplifies the parallelization process to the point where you simply need to take a few decisions to get good results. The
patented graphical user interface (GUI), together with a number of reports, provides full transparency and leaves you in
complete control at every step of the process.

Use your existing C code as starting point for the parallelization in ePS. Together with ePS Qualification Kit the
parallelization can be performed for applications with functional safety requirements like ISO 26262 or DO-178C.

Features

• Automated generation of parallel code
• Interactive optimization with user-friendly

Eclipse-based GUI
• Interactive code transformations to optimize

parallel code
• Parallelization on runnable-level or function-level

and sub-function-level
• Direct deployment of the parallelized program

to evaluation boards

Benefits

• Improved application response time and processing
throughput

• Correct-by-design approach
• Integrated functional tests for sequential and

parallel code (ISO 26262 and D0-178C)
• Easy workflow integration

Parallelization Workflow

parallel

DSP

Multicore

sequential

ISO 26262
DO-178C/330
IEC 61508
EN 50128

ePS
Qualification
Kit

emmtrix
Parallel
Studio

Transformations

Simulator performance feedback

Performance feedback

emmtrix Technologies > Parallel Studio 13

• Can be used early in development to track
projects through their lifecycle and monitor
how performance or dependencies change over
time. This helps to pinpoint high-impact code
changes and get a handle on application timing.

• (Function) developers can simply access the
results in their browsers

• Automated monitoring of thresholds can auto-
matically notify designers or architects when
runtimes become too high

• Reporting can be focused on parts of the appli-
cation to provide immediate feedback on the
impact of code changes

An additional 'run analysis' pass can be added after the build step. Compilable source code is a prerequisite for analysis
in both tools.

• Interactive HTML reports, which can be viewed
directly as results of Jenkins in the browser
- For ePE: searchable and sortable with options

to hide or show items
- For eDA: interactive visualisation that high-

lights relevant dependencies
• Results in XML and JSON formats for auto-

mated processing, such as ingestion into data-
bases or use in other tools

• Detailed log files that record all analysis steps
with warnings and other important information
that can be used for further insight into the
analysis

Commit
change Build Run

analysis
Deploy to

production
Deliver
build to
 staging

Run tests

Reports

Available Reports Some Benefits of Using emmtrix
Tools in CI/CD Workflows

Automated Analysis Integrated in CI/CD Workflow

Automated Analysis in Your CI/CD Workflow

https://www.emmtrix.com/tools/emmtrix-parallel-studio
https://www.emmtrix.com/tools/eps-qualification-kit

15

Code Vectorizer C++ to C Compiler

Our Services

The Tool to Vectorize Your Application Support for C++ Code

The vector units of high-performance microcontrollers promise to speed up the execution of data-parallel applications
based on linear algebra by factors greater than 10. Programming such accelerators manually is challenging because it
requires deep knowledge of their instruction set and microarchitecture. emmtrix Code Vectorizer (eCV) is your solution
to simplify this task significantly.

emmtrix C++ to C Compiler (eCPP2C) automatically translates your C++ source code into analyzable C code. The design
goal was to keep the binary compilation of the original C++ code and the binary compilation of the translated C code mostly
identical. This guarantees the functional correctness of the generated C code. eCPP2C utilizes the LLVM/Clang compiler
technology to enable support of the latest features of the fast evolving C++ standard. In combination with emmtrix Parallel
Studio, eCPP2C enables software parallelization of C++ applications.

Features

• Functional testing of vector code independent
of target platform

• Code transformations improving data level parallelism
and optimizing code for vectorization

• Integration of target platform simulators for
performance estimation

• Vectorization-aware code generation from Simulink®
models

• Code Fusion: block-crossing vectorization
of Simulink® models

• Generation of C code with vector extensions using
generic libraries or target specific intrinsics

Features

• Translation of C++ to C source code
• Utilizes latest LLVM/Clang compiler technology
• Gurantees functional correctness of

generated C code by verification tool
• eCPP2C Qualification Kit (ISO 26262,

DO-178C/330 or any comparable standard)
can be provided on request

• Demystifies how your C++ code is
compiled to assembler

Technical Consulting

• Performance optimization for single-core architectures
(e.g. cache optimization, floating-to-fixed-point
conversion)

• Deployment of applications on multicore architectures,
DSPs and GPUs (shared/ distributed memory, homo-
geneous/ heterogeneous)

• Evaluation and selection of appropriate single- and
multicore architectures individually and with DSP and
GPU accelerators if applicable

Integration & Tool Customization

• Customization of emmtrix tools for your target
domain’s requirements

• Individual interfaces for the seamless integration
of emmtrix tools into your existing workflow

• New product features on demand
• Support for your target architecture of choice

(i.e. multicore, DSP, GPU)

Trainings & Support

• User training for all our software packages
• Customisable installation and integration support
• Individual trainings upon request

• Can be used in combination with (certified)
C compilers and C code analysis tools

• Is integrated into emmtrix Parallel Studio GUI
to enable C++ code parallelization

Benefits

• No need to write vectorized code manually
• Easy exploitation of parallel vector hardware
• Limited hardware knowledge required
• Reduced testing effort
• Functional testing without hardware
• Short development cycles

Vectorization Workflow

1414 emmtrix Technologies > Code Vectorizeremmtrix Technologies > Code Vectorizer

vectorsequential

emmtrix
Code
Vectorizer

Transformations

Sequential
C code

C code with
vector extensions

Simulator performance feedback

Performance feedback

emmtrix Technologies > C++ to C Compiler/Our Services

https://www.emmtrix.com/tools/emmtrix-code-vectorizer
https://www.emmtrix.com/tools/emmtrix-cpp-to-c-compiler

Automation Tools
for Better Codeemmtrix Technologies GmbH

Haid-und-Neu-Straße 7
76131 Karlsruhe / Germany

Phone: +49 721 1803-2880
E-Mail: contact@emmtrix.com

www.emmtrix.comwww.emmtrix.com

mailto:contact%40emmtrix.com?subject=
https://www.emmtrix.com/

